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THE motivating example of the Choquet integral

evaluation of students with 3 criteria: mathematics (M), statistics (S), languages (L)

The strategy of evaluation is defined by 2 rules:

(R1): For a student good at mathematics (M), L is more important than S.
(R2): For a student bad in mathematics (M), S is more important than L.

Using the above rules on the following table (evaluations in scale [0, 20])

Math. Stat. Lang.
student A 16 13 7
student B 16 11 9
student C 6 13 7
student D 6 11 9

we have:

A ≺ B by Rule R1

C � D by Rule R2.

Christophe Labreuche On the interest of interacting criteria in MCDA



Motivation
Definition of independence

Shall we have interacting criteria?
How to learn interactions among criteria?

Conclusion

Introduction
MCDA models representing interacting criteria

Analysis of the example

What does this mean?
In the example, interaction comes from (statistical) dependencies
among criteria:

A student good in Math is in general also good in Physics;
But it is much more rare to have a student good in both Math and
Litterature.

Origins of interaction

(statistical) dependencies among criteria
Ex. of the students

preferential dependencies among criteria
tolerance/intolerance
fairness
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MCDA models representing interacting criteria

Without commensurability With commensurability
Independence Additive Utility Weighted Sum
among crite-
ria

U(x) =
∑

i∈N vi(xi) U(x) =
∑

i∈N wi ui(xi)

Interaction
among

Generalized Additive
Utility (GAI)

Choquet integral

criteria U(x) =
∑

A∈A vA(xA) U(x) =
∑

i∈N wi ui(xi)

(A ⊆ P(N)) −
∑
{i,j}⊆N

Ii,j
2 |ui(xi)− uj(xj)|

Christophe Labreuche On the interest of interacting criteria in MCDA



Motivation
Definition of independence

Shall we have interacting criteria?
How to learn interactions among criteria?

Conclusion

Introduction
MCDA models representing interacting criteria

Aim of the talk

Aim
Is interaction among criteria really useful? When can we
encounter it?
How to measure/elicit interaction?
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Weak independence

Attribute i is weakly independent to N \ {i} if

(xi , z−i ) % (yi , z−i ) ⇐⇒ (xi , t−i ) % (yi , t−i )

Preferential independence

Attributes S are preferentially independent to N \ S if

(xS , z−S) % (yS , z−S) ⇐⇒ (xS , t−S) % (yS , t−S)

Weak Difference Independence

Attribute i is weakly difference independent to N \ {i} if

(xi , z−i )
(
x′i , z−i

)
%? (yi , z−i )

(
y ′i , z−i

)
⇐⇒ (xi , t−i )

(
x′i , t−i

)
%? (yi , t−i )

(
y ′i , t−i

)
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Decision under uncertainty

PX : set of probability distributions over X (also called lotteries or gambles)

Particular case (discrete support): 〈p1, x1; . . . , pr , x r 〉
Given P ∈ PX , the marginal of P over S ∈ S is defined by, for every xS ∈ XS

PS(xS) =
∑

xN\S∈XN\S

P(xS , xN\S).

%L⊆ PX × PX : preference over lotteries

Utility independence

Attribute i is utility independent to N \ {i} if for every i ∈ N

〈
p1, (x1

i , z
1
−i ); p2, (x2

i , z
2
−i ); . . .

〉
%L
〈

p1, (y1
i , z

1
−i ); p2, (y2

i , z
2
−i ); . . .

〉
⇐⇒

〈
p1, (x1

i , t
1
−i ); p2, (x2

i , t
2
−i ); . . .

〉
%L
〈

p1, (y1
i , t

1
−i ); p2, (y2

i , t
2
−i ); . . .

〉
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Independence concepts based on uncertainty

Additive independence

Attributes N are additively independent if for every P,Q ∈ PX , with P{i} ≡ Q{i} for every i ∈ N,
then P ∼L Q.

Illustration 〈
0.5, (a⊥1 , a

⊥
2 ); 0.5, (a>1 , a

>
2 )
〉
∼L
〈

0.5, (a⊥1 , a
>
2 ); 0.5, (a>1 , a

⊥
2 )
〉
.
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[Keeney 1972] Under utility independence, preferences are represented by

u(x) =
∑

S⊆N, S 6=∅

kS

∏
i∈S

ui (xi )

[Fishburn 1965] Under additive independence, preferences are represented by

u(x) =
∑
i∈N

ki ui (xi )

[Keeney 1974] Under utility independence and preferential independence, preferences are
represented by (i.e. 1 + k u(x) =

∏
i∈N (1 + k ki ui (xi )))

u(x) =
∑
S⊆N

k |S|−1
∏
i∈S

ki ui (xi )

[Dyer, Sarin 1979] Under Weak Difference Independence, preferences are represented by

u(x) =
∑

S⊆N, S 6=∅

kS

∏
i∈S

ui (xi )
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Value-Focused Thinking [Keeney 1992]

Fundamental vs. means objectives

Fundamental objective = what the decision maker really cares about

Means objective = ways to comply with the fundamental values

VFT steps

Identify the values, derive from that the alternatives

Check independence conditions (preference, utility, additive independence) to derive the form
of the utility model

Elicit the utility model

VFT dogma

If attributes are not independent, this means that

either we do not have the appropriate set of fundamental objectives,

or means objectives are used as fundamental objectives

In this case, rework to find the very fundamental objectives.

This ensures (statistical, causal) independence among criteria
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Value-Focused Thinking [Keeney 1992]

Complementarity among attributes

Ressource allocation to individuals

Attribute i = amount of ressource allocated to agent i

The attributes are not additive independent as
〈

0.5, (1, 1); 0.5, (0, 0)
〉

is strictly preferred to〈
0.5, (1, 0); 0.5, (1, 0)

〉
In the extreme case, (0, 0) is more fair than (1, 0) or (0, 1)

The attributes are the appropriate fundamental objectives

Violation of additive independence because there is another fundamental objective – namely
equity.

Hence the model
u(x1, x2) = k1u1(x1) + k2u2(x2) + ku1(x1)u2(x2)

where k > 0 because of equity/equal treatment

Criteria 1 complements criterion 2 as the better the achievement of x1, the more significant it
is to improve achievement of x2
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Value-Focused Thinking [Keeney 1992]

Substitutability among attributes

Risk management

Attribute i = achievement on sector i

The attributes are not additive independent as
〈

0.5, (1, 1); 0.5, (0, 0)
〉

is strictly less

preferred to
〈

0.5, (1, 0); 0.5, (1, 0)
〉

(0, 0) represents a very large risk, whereas (1, 0) or (0, 1) yield in-between

consequences.

Violation of additive independence because there is another fundamental objective – namely
risk aversion.

Hence the model
u(x1, x2) = k1u1(x1) + k2u2(x2) + ku1(x1)u2(x2)

where k < 0 because of risk aversion

Criteria 1 substitutes criterion 2 as the better the achievement of x1, the less significant it is to
improve achievement of x2
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Value-Focused Thinking [Keeney 1992]

Findings on VFT (1/2)

VFT does not exactly say that additive independence shall always hold;

VFT acknowledges that the decision maker may violate preferential independance (in case of

equity, complementary, redundancy,. . .)

VFT seems to explicitly extract interaction situation through new fundamental

objectives

But this is very difficult when we have many attributes.

When there are many interactions, it is more convenient to directly elicit a (e.g. 2-additive)
capacity.

Christophe Labreuche On the interest of interacting criteria in MCDA



Motivation
Definition of independence

Shall we have interacting criteria?
How to learn interactions among criteria?

Conclusion

Value-Focused Thinking
Some experiments
Case with reference points

Value-Focused Thinking [Keeney 1992]

Findings on VFT (2/2)

VFT does not give examples of statistical dependencies that cannot be solved by finding
more appropriate fundamental objectives. . .

Ex. quantity & quality in service disruption:

# persons affected by disruption is the quantity

the duration of the disruption is the quality

We encapsulate this

violation of additive

independence by

creating an impact matrix

of these two variables:

u1,2(x1, x2).

When we guess some dependencies among attributes, this amounts to using a GAI

model (guess the subsets structure S).
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Some experiments [Pirlot, Schmitz, Meyer, 2010]

Pirlot, Schmitz, Meyer, URPDM 2010

An empirical comparison of the expressiveness of the additive value
function and the Choquet integral models for representing rankings:

Comparison of three models:
Weighted Sum (WS): U(x) =

∑
i∈NM ωi fx(i)

=⇒ learn ω
Additive Utility (AU): U(x) =

∑
i∈N vi(xi)

=⇒ learn vi : Xi → R (e.g. UTA)
Choquet Integral (Ch): U(x) = Cv (fx)
=⇒ learn v

Representation of WS, AU and Ch on randomly generated
datasets
WS is the less general
AU better represents randomly generated datasets than Ch.
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Some experiments [Fallah Tehrani et al, 2014]

Fallah Tehrani, Labreuche, Hüllermeier, DA2PL 2014

MCDA:

WS
(Weighted Sum)

AU
(Additive Utility)

Ch
(Choquet)

Ch + U
(Choquet + utility)

Preference Learning (PL):

LR
(Logistic Regression)

UR
(Utilitaristic Regression)

CR
(Choquistic Regression)

CUR
(Choquistic Utilitaristic Regression)
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Some experiments [Fallah Tehrani et al, 2014]

0/1 loss for the experiments
Datasets CUR, pi = 2 CUR, pi = 3 UR, pi = 2 UR, pi = 3 LR CR

ERA .3191± .0185 .3015± .0197 .2894±.0239 .2953± .0365 .2932± .0261 2891± .0241
LEV .1352± .0236 .1302± .0126 .1415±.0190 .1563± .0271 .1662± .0171 .1500± .0207
CEV .0623± .0521 .0240± .0160 .0583±.0153 .0461± .0130 .1643± .0184 .0719± .0091
CPU .0285± .0301 .0244± .0252 .1390±.0630 .1171± .0549 .0336± .0068 .0276± .0229
DenBosch .1630± .0859 .1524± .0653 .1826± .0788 .1884± .0807 .1409± .0336 .1283± .0683
ESL .0660± .0196 .0680± .0210 .0785± .0260 .0670± .0312 .0602± .0264 .0694± .0218
Mammo .1642± .0271 .1553± .0317 .1685±.0302 .1600± .0303 .1683± .0231 .1693± .0285
Auto-MPG .0038± .0084 .0054± .0120 .0038±.0073 .0034± .0067 .0538± .0282 .0654± .0266
Breast Cancer .2773± .0348 .2989± .0550 .3079±.0635 .3042± .0501 .2669± .0483 .2861± .0482

CUR returns the best predictions
in 5 out of the 9 datasets

6

very significant improvement
for AUTO-MPG with CUR and UR

J
J
J
J
J
J
J]

�
�
�
�
�
�
��

CUR returns the worst predictions for ERA
(more expressive models are not necessarily
advantageous from a learning point of view)

@
@
@

@
@
@

@@I
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Some experiments [Fallah Tehrani et al, 2014]

Marginal contributions and interactions
Datasets ηCUR ηUR ηLR ηCR Marginal Marginal Interaction

contribution contribution among Utility
of Utility of Interaction and Interaction

ERA .3015 .2894 .2932 .2891 -.0043 -.004 -.0162
LEV .1302 .1415 .1662 .15 .02225 .01375 -.0049
CEV .024 .0461 .1643 .0719 .08305 .05725 -.0703
CPU .0244 .1171 .0336 .0276 -.04015 .04935 .0867
DenBosch .1524 .1826 .1409 .1283 -.0329 .0214 .0176
ESL .066 .067 .0602 .0694 -.0017 -.0041 .0102
Mammo .1553 .16 .1683 .1693 .01115 .00185 .0057
Auto-MPG .0038 .0034 .0538 .0654 .056 -.006 .0112
Breast Cancer .2773 .3042 .2669 .2861 -.01425 .0038 .0461

LR {}

UR {Utility} CR {Interaction}

CUR {Utility,Interaction} 1
2

[
(ηCUR − ηCR) + (ηUR − ηLR)

]

?

1
2

[
(ηCUR − ηUR) + (ηCR − ηLR)

]
C
C
C
C
CW

ηLR − ηCR − ηUR + ηCUR

?

A slight advantage of interaction over utility.
Interaction is negative when doing only utility or interaction is beneficial, but not both.
Interaction is positive to 6 datasets (beneficial to do both utility and interaction).
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Some experiments [T. Lust. ADT 2015]

T. Lust. ADT 2015

Choquet integral versus weighted sum in multicriteria decision contexts:

Comparison of WS and Ch in a multi-objective optimization context.

Given the efforts needed to set the parameters of the Choquet integral, it is important to
measure, for a given decision problem, if it is really worth defining the Choquet integral or if a
simple weighted sum could have been used to determine the best alternative.

Computation of the probability that a recommendation of a decision maker could only been

obtained with the Choquet integral and not with a weighted sum.

Concept of supported solution: point of the Pareto front that is the best according to a

given utility model.

When the number of criteria increases, the results show that this probability tends to one.
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Case with reference points

Capacities: 2 reference levels

Crit. 1

Crit. 2

0 1
0

1

Figure: Set of vectors t = (t1, t2) such that t1 ≥ t2.
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Case with reference points

k -ary capacities: k + 1 reference levels

Crit. 1

Crit. 2

0 1 2 3
0

1

2

3

Figure: Example with k = 3.
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Case with reference points

Ex. of multiple interaction strategies with k -ary capacities

X1

X2

Must Have Should Have Nice To Have

Must Have

Should Have

Nice To Have

Unacceptable Unacceptable Unacceptable Unacceptable

Unacceptable Intolerant

Unacceptable Compensat.

Unacceptable tolerant

Figure: Ex. of decision strategies [Labreuche, Grabisch’2017].
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Some experiments

[Grabisch, Kojadinovic, Meyer’2008]

Operation Research style: LP, Quadratic Programming

[Fallah Tehrani, Cheng, Dembczynski, Hüllermeier 2012]

Machine Learning: Choquistic Regression

[Mayag, Grabisch, Labreuche’2008]

Extension of MACBETH
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Based on information theory

Based on information theory [Kojadinovic, EJOR’2003]

Unsupervised learning given:

xk = (xk
1 , . . . , x

k
n ) ∈ X for k ∈ {1, . . . ,K}

Compute:

Pi : random variables of the scores x1
i , . . . , x

K
i on attribute i

H(PS) = −E
{

log
(

fPS
(ρS)

)}
: measure of information brought by Π = [{Pi}i∈S ], where

E {·} is the expectation operator and fPS
(ρS) is the probability density function (pdf) of the

multidimensional random variable Π = [{Pi}i∈S ].

v(S) =
H(PS )

H(PN ) .

Remarks:

Def H(PS) is conceptually related to the notion of mutual information.
Hence it is thus a natural measure of the degree of statistical dependence between the
criteria within S.

But estimating H(PS) is complex, especially for large values of n

Moreover, if n is large and K is small, the estimator for H(PS) yields a large variance
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Based on second-order statistics

Based on second-order statistics [Rowley, Geschke, Lenzen, FSS’2015]

Unsupervised learning given:

xk = (xk
1 , . . . , x

k
n ) ∈ X for k ∈ {1, . . . ,K}

Compute:

Pi : random variables of the scores x1
i , . . . , x

K
i on attribute i

Cov(Pi ,Pj ) = E
{

(Pi − E {Pi}) (Pj − E
{

Pj
}

)
}

: covariance between Pi and Pj

Covariance matrix RΠ =
[
Cov(Pi ,Pj )

]
i,j

λ1 ≥ λ2 ≥ · · · ≥ λn: Eigenvalues of Covariance matrix RΠ, with associated eigenvectors
v1, v2, . . . , vn

J(PS) =
∑

i∈S min(λi , 1)

v(S) =
J(PS )

J(PN ) .

Remarks:

The analysis is limited to pairwise dependencies among attributes
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Conclusion

Is interaction really useful?

In practice, DMs naturally express interaction among criteria
Interaction can be explicitly guessed (as in VFT) or learnt

Open problems

Better understand the origin of interaction: from (statistical)
dependencies or preferential dependencies
Better discriminate between these two types of interaction
Is is possible to perform “meaningful” unsupervised learning?
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